Poly(trimethylene carbonate) and biphasic calcium phosphate composites for orbital floor reconstruction: a feasibility study in sheep.
نویسندگان
چکیده
In the treatment of orbital floor fractures, bone is ideally regenerated. The materials currently used for orbital floor reconstruction do not lead to the regeneration of bone. Our objective was to render polymeric materials based on poly(trimethylene carbonate) (PTMC) osteoinductive, and to evaluate their suitability for use in orbital floor reconstruction. For this purpose, osteoinductive biphasic calcium phosphate (BCP) particles were introduced into a polymeric PTMC matrix. Composite sheets containing 50 wt% BCP particles were prepared. Also laminates with poly(D,L-lactide) (PDLLA) were prepared by compression moulding PDLLA films onto the composite sheets. After sterilisation by gamma irradiation, the sheets were used to reconstruct surgically-created orbital floor defects in sheep. The bone inducing potential of the different implants was assessed upon intramuscular implantation. The performance of the implants in orbital floor reconstruction was assessed by cone beam computed tomography (CBCT). Histological evaluation revealed that in the orbital and intramuscular implantations of BCP containing specimens, bone formation could be seen after 3 and 9 months. Analysis of the CBCT scans showed that the composite PTMC sheets and the laminated composite sheets performed well in orbital floor reconstruction. It is concluded that PTMC/BCP composites and PTMC/BCP composites laminated with PDLLA have osteoinductive properties and seem suitable for use in orbital floor reconstruction.
منابع مشابه
Supporting Information UV-Crosslinkable Graphene/ poly (trimethylene carbonate) Composites for 3D Printing of Electrically Conductive Scaffolds
متن کامل
In vivo degradation of poly L-lactic D-lactic acid and tri-methylene carbonate sheets in orbital reconstruction
This study was conducted to evaluate changes in the composition of a poly-L-lactic D-lactic acid and trimethylene carbonate (PLDLA-TMC) sheet after insertion into the human body. A 35-year-old woman had an orbital fracture that was reconstructed using a PLDLA-TMC sheet. During iliac bone grafting for enophthalmos 190 days after the insertion, the sheet was removed and analyzed using gel permeat...
متن کاملComparison of Phosphate Lowering Properties of Calcium Acetate and Calcium Carbonate in Hemodialysis Patients
Hyperphosphatemia has an important role in the development of secondary hyperparathyroidism and bone disease in patients with end-stage renal disease (ESRD). The most effective method of phosphate elimination lies with phosphate binders, the agent that more commonly used, calcium carbonate, is not an ideal binding agent. In this regard, calcium acetate has been reported to have more or at least...
متن کاملHeterotopic bone formation by nano-apatite containing poly(D,L-lactide) composites.
To render polymeric materials osteoinductive, nano-sized calcium phosphate apatite particles (CaP) were introduced into a low molecular weight poly(D,L-lactide). Homogenous composites were made with 10%, 20% and 40% by weight of apatite content while pure polylactide was used as control. Thereafter porous samples (pore size 300-400 microm, 60% porosity) were fabricated and sterilized. In vitro ...
متن کاملTissue Response to, and Degradation Rate of, Photocrosslinked Trimethylene Carbonate-Based Elastomers Following Intramuscular Implantation
Cylindrical elastomers were prepared through the UV-initiated crosslinking of terminally acrylated, 8,000 Da star-poly(trimethylene carbonate-co-ε-caprolactone) and star-poly(trimethylene carbonate-co-D,L-lactide). These elastomers were implanted intramuscularly into the hind legs of male Wistar rats to determine the influence of the comonomer on the weight loss, tissue response, and change in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European cells & materials
دوره 27 شماره
صفحات -
تاریخ انتشار 2014